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Abstract

We propose a novel learning-based approach for monocular recon-
struction of arbitrary 3D shapes. Our approach takes a single image
as input and outputs a detailed signed distance function (SDF) rep-
resentation that describes the geometry of the object based on its
zero-th level-set. We represent SDFs efficiently based on a linear
combination of floating radial basis functions, where both the sup-
porting points as well as the blending weights are free variables. At
the core of our approach is a weakly-supervised learning scheme that
does not require access to the ground-truth parameters of the radial
basis functions during training. Our approach efficiently combines the
desirable low space complexity of approaches which only reconstruct
point clouds, with the surface approximation properties of distance
field-based reconstruction techniques. We perform extensive qualita-
tive and quantitative evaluations to compare our approach with the
state-of-the-art methods. These evaluations demonstrate the capabil-
ities of our approach to reconstruct high-quality surfaces of objects,
even with local details. In addition, we show that our approach pro-
duces comparable results to the state-of-the-art methods in terms of
quality and accuracy of the estimated 3D shape.
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Chapter 1

Introduction

3D object reconstruction from a single monocular image has many applications
including augmented reality, virtual reality, e-commerce, and industrial design.
Inferring the 3D structure of the underlying scene in the 2D image is an easy
task for humans, but it is a challenging and ill-posed problem for a machine.
This difficulty is mainly because a 2D image could be the projection of many 3D
shapes (Figure 1.1).

Figure 1.1: A 2D image could be the projection of many different 3D structures.
(Sinha & Adelson (1993)).

Recently, this task has been tackled by learning-based techniques that exploit
priors of the considered object classes. Most of these approaches use a convo-
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lutional neural network (CNN) to map the input monocular image to the 3D
geometry of the object.

Significant progress has been made in deep-learning-based approaches to learn
an efficient and effective representation of the 2D images (Krizhevsky et al. (2012);
Oquab et al. (2014); Szegedy et al. (2016); Zeiler & Fergus (2014)). Using current
deep-learning-based approaches, we can solve different types of tasks in computer
vision (Dong et al. (2016); Girshick et al. (2014); Long et al. (2015)) and com-
puter graphics (Gryka et al. (2015); Kalantari et al. (2015); Wang et al. (2017)).
However, learning a model to reconstruct the 3D shape of a single monocular
image remains a challenging task.

To tackle the reconstruction of 3D shapes from 2D images, different deep-
learning-based methods employ different 3D representations. One type of these
methods uses occupancy grids to represent the 3D geometry of a given 2D image
(Choy et al. (2016); Häne et al. (2017)). With such an approach we can represent
the arbitrary topologies of different categories of shapes. However, due to the
cubic space complexity of the volume, we can reconstruct only a coarse represen-
tation of the 3D shape. Most of these methods commonly use a 32×32×32 volume
to represent the 3D geometry of the shapes. Another type of deep-learning-based
methods uses a point cloud-based representation to reconstruct the on-surface
points of different shapes (Fan et al. (2017)). The point cloud representation
is an efficient and sparse representation of the 3D shapes. However, it cannot
capture the surface normals and fine-details of the objects. To train these deep-
learning-based approaches, usually ShapeNet (Chang et al. (2015)) or ModelNet
(Wu et al. (2015)) datasets are used to prepare a large set of 2D images with their
corresponding 3D information. Figure 1.2 shows an example of the voxel-based
(left) and the point-based (right) representations.

Voxel-based approaches usually train a deep convolutional neural network
that maps an input image to an occupancy grid. To train these models, most
of these methods use pairs of 2D images with their corresponding occupancy
grids. As mentioned before, due to the space and computational complexity, these
approaches only predict a coarse 3D shape of the object. Moreover, by increasing
the resolution of the volume, the ratio between occupied and non-occupied voxels
becomes smaller and smaller.

Point-based approaches also employ a deep convolutional neural network to
predict the 3D geometry from a 2D image. In these approaches instead of voxel-
grids, the point clouds are used to represent the 3D shape of the object, which is a
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1. INTRODUCTION

Figure 1.2: An example of the voxel-based (left)(Yumer & Mitra (2016)) and
the point-based representation (right) (Fan et al. (2017)) of a car.

more efficient way of 3D representation in comparison to the voxel-grid represen-
tation. This efficiency is because of predicting only the position of the points in
3D space without considering the non-occupied regions. We can train these mod-
els using pairs of 2D images with their corresponding point clouds. Even though
a point cloud is an efficient 3D representation, however, it cannot be represented
as a CAD model or even a simple mesh.

In this thesis, we propose a deep-learning-based approach which tries to com-
bine the advantages of these two worlds. We seek for the space complexity of
the point-based techniques, while still maintaining a surface representation. Our
proposed learning-based model maps the given single monocular image to the de-
tailed signed distance function (SDF) representation of its 3D shape. With this
representation, we can describe the geometry of the object based on the zero-th
level-set of the signed distance function. To represent the signed distance func-
tions efficiently, we use a linear combination of radial basis functions (RBFs).
Using radial basis functions, we can represent complex shapes based on a small
number of basis functions (Turk & O’brien (1999)).

In our approach, we employ a deep convolutional encoder to represent the 3D
shape of the monocular input image as an implicit surface representation. Using
this encoder, we can extract the features of the input image and map them to the
set of parameters of the RBF. In fact, in this thesis instead of directly regressing
points on the shape, we regress a set of basis functions and blending coefficients
of the RBF that describe the underlying distance field (Figure 1.3).

3



Figure 1.3: Given a single monocular image, our learning model outputs a
detailed signed distance function which represents the underlying geometry of
the object.

Since there is no dataset that provides the ground-truth distance fields, we
propose a weakly-supervised training approach that uses point clouds for opti-
mizing the best fitting distance field approximation. In this thesis our three main
contributions are:

• An end-to-end approach for monocular reconstruction of 3D shapes,

• A weakly-supervised training approach that does not require ground-truth
distance fields during training,

• An efficient GPU implementation of the proposed weakly-supervised loss
function.

The remainder of the thesis is organized as follows: In the next chapter (Chap-
ter 2), we give an overview of the related optimization-based and learning-based
approaches for 3D reconstruction. We compare different types of 3D representa-
tions and specify their advantages and limitations. We introduce all of the ingre-
dients which we will use to devise our approach in Chapter 3. In this chapter,
we provide a brief introduction about, implicit surface representations, convolu-
tional encoders, and GPU programming. In Chapter 4, we provide the details
of the proposed method and explain all the terms of the weakly-supervised loss.
After describing all aspects of the proposed learning-based model, we illustrate
the training procedure (Chapter 5). In Chapter 6, we provide the implementation
details and the results of our approach on different categories. We discuss the
potential future works and possible extensions to our proposed model in Chapter
7. Finally, we summarize the proposed work in Chapter 8.
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Chapter 2

Related Work

2.1 Point Cloud Reconstruction
3D reconstruction from point clouds has a long history in computer vision and
computer graphics. This problem has been mostly tackled by optimization based
methods which fit a surface to the scattered data points. Recently, with the
availability of large-scale 3D data, a few deep-learning-based methods have been
proposed to tackle this problem. In the rest of this section, we review some
optimization-based and learning-based methods which have been proposed to
reconstruct the surface from a given point cloud.

2.1.1 Optimization-based Reconstruction
We can classify optimization-based methods, which have been proposed for solv-
ing the point cloud reconstruction problem, in many different ways. Süßmuth
et al. (2010) classified these methods into Delaunay based methods and implicit
methods.

Delaunay based methods use Voronoi diagrams or the Delaunay triangula-
tion of the point cloud to reconstruct the surface of the object (Cazals & Giesen
(2006)). In Boissonnat (1984), which is one of the first Delaunay based methods,
the reconstruction problem is reduced to the computation of the local recon-
struction based on the tangent plane at the sample points. The final shape is
reconstructed by patching these local reconstructions together. Gopi et al. (2000),
proposed an extension of the Boissonnat (1984) work which uses normals and tan-
gent planes to compute the Delaunay neighborhood. The main benefit of many
of these methods is that under certain sampling conditions they guarantee the
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2.1 Point Cloud Reconstruction

correctness of the output. However, as these methods usually try to interpolate
the input points, they are very susceptible to noise. For more details about these
methods, we refer to Cazals & Giesen (2006).

Implicit methods approximate the input points as the zero-th level-set of an
implicit function. This approximation could be represented by different functions
f . Hoppe et al. (1992), compute the function f as a piece-wise linear function.
This function is computed based on the signed distance to the tangent plane of
the closest point. Ohtake et al. (2003) propose an implicit surface representation
using the multi-level partition of unity. They reconstruct the surface locally using
quadratic polynomials and blend the local functions to reconstruct the surface
globally. There is a powerful class of implicit functions that reconstruct the
surface based on radial basis functions. The value of these functions depends
only on the distance of the points from some other points which are called center
points. In Turk & O’brien (1999), they use radial basis functions by generating
artificial off-surface points to approximate the surface. They generate these off-
surface points based on the normals directions of the point cloud. In this work,
as they use one center point per each point, the reconstruction of the surface with
a large set of points would be computationally expensive or even infeasible. In
Carr et al. (2001), they use a greedy algorithm to reduce the number of center
points which leads to a fast approximation method for fitting the RBF. Süßmuth
et al. (2010) introduce the concept of floating center points to obtain a better
approximation while using a smaller number of center points. They reconstruct
the surface hierarchically using floating radial basis functions. Figure 2.1 show
an example of reconstructing a surface using this method.

Figure 2.1: An example of hierarchical reconstruction using floating radial basis
functions. (Süßmuth et al. (2010)) .
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2. RELATED WORK

2.1.2 Learning-based Reconstruction
A few deep-learning-based approaches are proposed to reconstruct the surface
of the object from a point cloud. To tackle this problem using deep-learning-
based methods we need a large set of 3D data. ShapeNet (Chang et al. (2015)),
and ModelNet (Wu et al. (2015)) provide large-scale 3D datasets which contain
different categories of CAD models. Using such a large-scale data set of 3D data,
AtlasNet (Groueix et al. (2018)) and Deep Marching Cubes (Liao et al. (2018))
proposed deep-learning-based methods to reconstruct the surface of the given
point cloud.

In AtlasNet (Groueix et al. (2018)), to reconstruct the surface from a point
cloud, they train a deep neural network model. This model gets the point cloud
as input and approximates the target surface by learning the parameterization
and a 2D embedding of the shape. They also propose a deep learning model
to reconstruct the surface from a given RGB image, which we review in Section
2.3. In our method, we also represent the surface as a set of parameters of a
function. However, to reconstruct the surface of the object we do not need to
learn the embedding information, as in our representation the zero-th level-set of
the reconstructed function represents the surface.

Liao et al. (2018) propose Deep Marching Cubes to reconstruct the surface
from a point cloud using a learning-based model. They propose a modified dif-
ferentiable representation of the marching cubes algorithm (Lorensen & Cline
(1987)). This modified marching cubes algorithm is used as the final layer to
reconstruct the surface of the given data points. This approach is capable of
reconstructing a surface that corresponds to a point cloud with arbitrary topol-
ogy in a volume. However, due to the growth of the volume, this model can not
reconstruct surfaces with high resolution. In contrast, in our proposed method,
as we represent the surface of the shape as an implicit function, to capture more
details of the shapes, we only have to increase the number of parameters, which
is in order of O(n).

2.2 Multi-view Reconstruction
3D Reconstruction based on multi-view geometry is a well-researched (Hartley
& Zisserman (2003)) topic in graphics and vision. Traditionally this problem is
solved by optimization-based methods, where different viewpoints of the objects
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2.2 Multi-view Reconstruction

are used to reconstruct the underlying 3D information. Recently, deep-learning-
based methods have also been proposed to tackle the 3D reconstruction problem
using multi-view information. Most of these learning-based methods use synthet-
ically rendered data as training data, where the underlying 3D information is
available for all of the images. To provide more information about this category
of methods we review some of the related optimization-based and deep-learning
based methods in the following subsections (Subsections 2.2.1, and 2.2.2).

2.2.1 Optimization-based Reconstruction
Structure from Motion (SfM) (Özyeşil et al. (2017)) and Simultaneous Localiza-
tion and Mapping (SLAM) are two major directions in optimization-based 3D
reconstruction using multi-view geometry. In the SfM-based methods, usually,
the extracted features and the estimated camera positions of the images are used
to reconstruct the 3D structure (Schonberger & Frahm (2016)). Using the ob-
tained features and estimated motions makes the problem solvable by minimizing
the total reprojection error. SLAM is another type of method which uses multi-
view images to reconstruct the 3D information (Fuentes-Pacheco et al. (2015).
SLAM methods are used to establish the position of an agent in an environment
and extract the 3D information of the explored zone.

These methods are very successful in reconstruction and navigation. However,
they have two main restrictions. First, they require multiple views of the object
to reconstruct the 3D structure. In fact, as these approaches can not reconstruct
the unseen parts of the object or scene, they usually require a large number of
different views of the object to obtain a reconstruction. Another restriction of
these methods is related to the appearance of the objects and the scene. One
of the ways for dealing with such cases is using shape priors (Bao et al. (2013);
Dame et al. (2013); Hane et al. (2014)). However such a prior cannot cover all
possible cases. These restrictions lead to the current trend of deep-learning-based
methods, which we cover in the following subsection (Subsection 2.2.2).

2.2.2 Learning-based Reconstruction
Recently, a lot of deep-learning-based methods have been proposed to reconstruct
3D information using multi-view images. To train these methods usually a large
set of synthetically rendered images is used. Most of these methods only use
multi-view images in the training procedure, and after that they just require a
single-view of the object to reconstruct its 3D geometry. We review these methods

8



2. RELATED WORK

in Subsection 2.3.2. A few of these deep-learning-based approaches use multi-view
images in both the training and testing procedure. In this subsection we cover
this type of deep-learning-based methods.

In Choy et al. (2016) and Kar et al. (2017), they used a recurrent neural
network to reconstruct 3D geometry of the shapes from multi-view and single-view
images. Choy et al. (2016) use Long Short-Term Memory (LSTM) (Schmidhuber
& Hochreiter (1997)) to map the image(s) to the 3D geometry of the shape in a
voxel-grid. This approach takes one or more images with different viewpoints and
predicts the 3D shape as an occupancy grid (Figure 2.2). In Kar et al. (2017),
they propose a learning-based system which reconstructs the 3D geometry of
the object using feature projection and unprojection from 2D to 3D and vice
versa. In this work, they reconstruct the 3D geometry of the multi-view images
as voxel occupancy grids or per-view depth maps. Their method is also capable
of reconstructing 3D geometry from a single-view image as a voxel-grid.

Figure 2.2: An overview of the 3DR2N2 model (Choy et al. (2016)) .

The main drawback of these two works is the inefficient representation of the
3D geometry of the shapes. In fact, due to the cubic space complexity of the voxel-
grid, these methods cannot predict results with high-quality details. In addition
to this as we mentioned in Chapter 1, increasing the size of the volume leads
to decreasing the ratio between occupied and non-occupied voxels. In general,
inefficient representation is the main drawback of all 3D reconstruction methods
which use a voxel-grid to represent the 3D geometry of the shapes. In contrast,
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2.3 Single-view Reconstruction

our proposed approach uses an efficient representation, where the complexity
relies on a set of blending weights and center points. We use these parameters to
construct the function f which represents the surface of the given object.

2.3 Single-view Reconstruction
While most of the research is focused on reconstructing the 3D information using
point clouds and multi-view images, a more desirable solution would be recon-
struction based on a single input image. This is a challenging and ill-posed prob-
lem. Due to the difficulty of this problem, there are only a few optimization-based
methods which have tried to reconstruct 3D shapes using single-view images. This
problem has been mainly tackled by learning-based approaches. Recently, lots
of different deep-learning-based approaches have been proposed to reconstruct
the 3D shape from single-view images. By training these learning models using
a large set of data, these methods learn to directly map from the RBG image
to the 3D shape of the object. In the rest of this section, we review some of
the optimization-based and learning-based methods which have been proposed to
reconstruct the 3D geometry of the shape from a single image.

2.3.1 Optimization-based Reconstruction
ShapeFromX is the type of early work which tries to reconstruct 3D information
based on single-view images (Remondino & El-Hakim (2006)). Most of these
methods, such as shape from shading (Horn & Brooks (1989)) and shape from
texture (Aloimonos (1988)) make a strong assumption about the environment
lighting condition and the property of the shapes. In Horn & Brooks (1989), to
reconstruct the 3D shape of the object, it is assumed that the object’s reflectance
is Lambertian. However, many real-world cases do not follow this model. Aloi-
monos (1988) also made a strong assumption on the texture distribution to recon-
struct 3D information from single-view images. In this work, they assume that
natural textures have a uniform density, and based on this assumption they devise
a method to recover the orientation of the surface under perspective projection.

2.3.2 Learning-based Reconstruction
There are a lot of deep-learning-based methods which have been proposed to
tackle the 3D reconstruction problem from a single-view image. These deep-
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Figure 2.3: An example of hierarchical surface prediction based on a single image
(Häne et al. (2017)).

learning approaches try to map the input RGB image to the 3D geometry of the
object using a deep neural network architecture. These methods usually predict
the 3D geometry of the object as an occupancy voxel-grid or a point cloud.

The method of Choy et al. (2016), which we reviewed in Subsection 2.2.2,
is also capable of predicting the occupancy grid in a volume based on a single-
view image. Girdhar et al. (2016) propose a novel architecture that combines a
generative model for 3D data and a 2D embedding network for reconstructing the
3D shapes from single-view images. They also represent the 3D shape as a 3D
voxel-grid. In Yan et al. (2016), they propose a novel projection loss based on the
perspective transformation to reconstruct the 3D geometry of the object, which
is represented as a voxel-grid. This projection loss uses multi-view information
as ground-truth to reconstruct the 3D geometry of the object.

In Subsection 2.2.2 we described that due to the cubic space complexity of
the uniform grid we can not reconstruct a fine-detailed 3D data in a voxel-grid.
Häne et al. (2017) try to facilitate the high-resolution prediction of the voxel-
grids using a hierarchical prediction method. In addition to predicting free and
occupied voxels, they predict the boundary space, which helps in predicting only
the occupied space around the boundary. By using this information they hier-
archically predict voxels from a coarse-to-fine resolution in an octree. Figure 2.3
show an example of the predicted voxel-grids from coarse to fine resolution.

Fan et al. (2017) use the point cloud representation to avoid cubic spatial
growth. They employ a deep neural network architecture to map the input RGB
images to the point clouds which represent the 3D shapes of the objects. Figure
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2.4 shows an example of point cloud reconstruction of the input image. In this
work, the generated point cloud does not provide enough information to recover
the 3D mesh of the shape.

In AtlasNet (Groueix et al. (2018)), in addition to mapping the input point
clouds to the surfaces, a deep neural network model is proposed to map the given
RGB images to the surfaces of the 3D shapes. To train this model they used a
set of RGB images of the objects with their corresponding ground-truth point
clouds. They reconstruct the surface of a shape by jointly learning a set of 2D
embeddings and their parameterization. This method is capable of reconstruct-
ing the surface and capturing the local details. However, AtlasNet represents
the surfaces of the objects as a group of patches, where these patches could be
locally disconnected. In contrast, our proposed method represents the surface
of the object as an implicit function. Using this representation, we can capture
fine-details of the objects and reconstruct surfaces with high quality which are
consistent throughout the objects.

Figure 2.4: A point cloud reconstruction of a given 2D image visualized from
two different views (Fan et al. (2017)) .
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Chapter 3

Background

In Chapter 1, we mentioned that in this thesis a deep convolutional neural net-
work is employed to map the given single monocular image to the implicit surface
representation. In this chapter, we first introduce the implicit surface represen-
tation and provide the mathematical details of this representation (Section 3.1),
and then in Section 3.2, we introduce the neural networks and describe the con-
volutional neural networks in details. At the end of this chapter, we provide
information about GPU programming (Section 3.3), which we use to parallelize
the implementation of our proposed loss function.

3.1 Implicit Surface Representation

We can represent a surface in R3 implicitly using a function f , where the value
of this function on the surface is equal to a constant c. For example, we can
represent a unit sphere implicitly using the function f(x) = ∥x∥ − 1, where
x = (xx,xy,xz). This function implicitly represents regions inside, outside and
on the sphere. In other words, for every arbitrary point x ∈ R3, we can determine
if the point is on the surface or not. If f(x) = 0, this point is on the surface of
the sphere, if f(x) < 0, it is inside the surface, otherwise it is outside. Note that
in this thesis we consider ∥.∥ = ∥.∥2, and ∥.∥2 = ∥.∥22. In the rest of this section
we provide mathematical details of implicit surface representation (Subsections
3.1.1, and 3.1.2), and in Subsections 3.1.3, and 3.1.4, we describe how we can use
this representation to reconstruct the surface of an object.
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3.1.1 Level-set Methods
Level-set methods are a computational framework to perform numerical compu-
tation on curves and surfaces based on the level-set models. Osher & Sethian
(1988) for the first time used level-sets to compute and analyze the motion of 2D
or 3D interfaces. They devised a computational framework based on a simple
observation that a curve in R2 or a surface in R3 can be represented as the level-
set of a function in a higher dimensional space (Osher & Fedkiw (2001)). For
example, a curve γ in R2 can be represented as a c-th level-set of a real-valued
function f in R3 as follow:

γ(x, y) = {(x, y, c) ∈ R3, f(x, y) = c} .

The generalization of representing n-dimensional hyper-surfaces using the
level-set method is straightforward. For example, an n-dimensional hyper-surface
Γ in Rn can be represented as c-th level-set of a real valued function f in Rn+1

as follows:

Γ(x1, x2, ..., xn) = {(x1, x2, ..., xn, c) ∈ Rn+1, f(x1, x2, ..., xn) = c} .

Representing a circle as a level-set of a cone is a well-known example. We
can represent a circle with radius r as the r-th level-set of a cone: f(x, y) = r,
where f(x, y) =

√
x2 + y2, or the zero-th level-set of a cone: f(x, y) = 0, where

f(x, y) =
√

x2 + y2 − r.
Each c-th level-set of a function f(x) where x = (x1,x2, ...,xn) has the fol-

lowing properties:

f(x) > c for x ∈ Ω+

f(x) = c for x ∈ ∂Ω

f(x) < c for x ∈ Ω−,

where ∂Ω is on the interface (e.g., on the surface in the 3D case). Ω+ is outside,
and Ω− is inside the interface (Osher & Fedkiw (2001)). In general, with these
level-set functions, we can specify if a point is on an interface or not, but the
absolute value of the function f does not necessarily give us the shortest distance
to the interface.

Another valuable property of these methods is related to the gradient of the
real-valued function f . If this function is differentiable at each point, the gradient
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of f is either zero or perpendicular to the corresponding level-set of that point in
f (Osher & Sethian (1988)).

Intuitively speaking, we can consider the function f as a mountain and a
circular road around f as c-th level-set of f , and imagine two hikers A, and B
on this mountain. Hiker A goes in a direction with the steepest slope which is
the direction of the gradient of the function f (mountain), and hiker B is just
walking on the c-th level-set of the function f (mountain) which has a constant
height everywhere. These two hikers will see each other on the same point with
two perpendicular directions.

3.1.2 Signed Distance Functions

Signed distance functions are a sub-set of level-set functions which share all of
the properties discussed in 3.1.1. In addition to all of these properties, a signed
distance function gives us the shortest distance to the interface. In other words,
If the signed distance function f is differentiable, then:

∥∇f(x)∥ = 1 .

The intuition behind this condition is as follow: in Section 3.1.1 we mentioned
that the gradient of a level-set function f is perpendicular to the interface, so on
the interface the gradient of f gives the normal of the interface. The normal
vector direction points to the positive side of the interface. As the magnitude
of the gradient is equal to unity, for each step in the normal direction or in the
opposite direction with unit length, the value of the signed distance function
increases or decreases by one respectively.

Based on this description we can define a signed distance function f(x) where
x = (x1,x2...xn) as follows:

f(x) =


d(x, ∂Ω) if x ∈ Ω+

0 if x ∈ ∂Ω

−d(x, ∂Ω) if x ∈ Ω− .

Where d(x, ∂Ω) is the distance of x to its closest point on the interface. In
the 3D case, it is the distance to the closest point on the surface.
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3.1.3 Surface Reconstruction using Radial Basis Functions

Given n sample points P = {x1, ...,xn} ∈ R3 of a surface, we can fit an implicit
function f to these points to reconstruct the surface approximately. To represent
this surface implicitly as the zero-th level-set of a function f , we need to find
an implicit function f which satisfies the following equation for all of the sample
points xi:

f(xi) = 0, i = 1, ..., n . (3.1)

In addition to this condition, to avoid the trivial solution that f is zero every-
where, we can add off-surface points to the input sample points which are given
non-zero distance value. With these off-surface points, the implicit function f

should satisfy the following equations:

f(xi) = 0, i = 1, ..., n

f(xi) = di ̸= 0, i = n+ 1, ..., N .

Where |di| is the shortest Euclidean distance to the on-surface points, and N

is the number of points, including on-surface and off-surface points. To enforce
|f(xi)| to be equal to the shortest Euclidean distance of the xi to the on-surface
points, we have to represent the approximated function f as a signed distance
function. In this implicit representation, we can assign points outside of the
surface to be positive and inside of the surface to be negative or vice versa.

To generate the off-surface points similar to Turk & O’brien (1999), we can
move the on-surface points along their corresponding normals. These points could
be inside or outside of the surface. With these off-surface and on-surface points,
we can construct the signed distance function f which represents the surface
implicitly. Figure 3.1 shows an example of generating the off-surface points.

Given a set of on-surface and off-surface points of an object, we can implicitly
reconstruct the surface of this object using a signed distance function f . This
function should be flexible and smooth enough to represent surfaces with arbitrary
complexity. Radial basis functions (RBFs) are a good candidate to represent the
surface implicitly as they can approximate any complex function with the sum of
simple translated and scaled basis functions.
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Figure 3.1: Generating off-surface points using the normals of the surface points
Carr et al. (2001).

In the case of using RBFs to represent the surface, we can define the function
f as the sum of Nc scaled and translated radial basis functions Ψ : R3 → R with
a polynomial of low degree:

f(x) =
Nc∑
j=1

αjΨ(cj,x) + P (x) . (3.2)

Where in this equation (Equation 3.2) Nc is the number of center points
cj ∈ R3, and αj ∈ R are the corresponding blending weights, and P (x) =∑4

k=1 βkbk(x), where βk ∈ R, and b(x) = (xx,xy,xz, 1). Note that, (xx,xy,xz)

are the elements of the 3D vector x.
In general, the radial basis function Ψ could be any function which satisfies

the following property :

Ψ(x) = Ψ(∥x∥) .

There are a lot of different functions which satisfy this property. In the fol-
lowing we provide some of the functions which are commonly used in practice to
reconstruct the surface of an object:

• Gaussian:
Ψ(c,x) = e−λ||c−x||22 .

• Inverse quadratic:
Ψ(c,x) =

1

1 + ϵ||c− x||22
.
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• Triharmonic splines:
Ψ(c,x) = (||c− x||22)3 .

Note that in Gaussian function λ > 0, and in Inverse quadratic function
ϵ > 0. To fit a surface to the given point cloud using RBFs, usually we assume
that there is one basis function located at each on-surface point. In this case,
the number of center points Nc is equal to the number of sample points, and
each center point cj = xi, where i = j. To construct the implicit function f , we
have to find the parameters α = α1, ..., αNc and β = β1, ..., β4 which satisfy the
condition of Equation 3.1, and P Tα = 0 (see Carr et al. (2001) for more details
and derivation). We can find the parameters of the function f by solving the
following linear system of equations:(

Ψ P
P T 0

)(
α
β

)
=

(
v
0

)
.

Where Ψ ∈ RN×Nc , for each Ψi,j = Ψ(cj,xi), and P ∈ RN×4 for each Pi,k =

bk(xi). In this linear system, v ∈ RN for the on-surface points is equal to zero and
for the off-surface point xi is equal to di, where |di| is the Euclidean distance of
the point xi to the closest points on the surface. With solving this linear system
of equations, we can construct the signed distance function f , which represents
the surface implicitly.

3.1.4 Surface Reconstruction using Floating Radial Basis
Functions

In Subsection 3.1.3, we mentioned that to fit a surface to a point cloud using
RBFs, usually, we set the number of center points equal to the number of sample
points. In cases where we have a large set of sample points, this leads to a huge
linear system of equations, which is computationally expensive to solve. Süßmuth
et al. (2010), try to deal with this problem by introducing the concept of floating
centers. In this work, they formulate the problem of fitting a surface to the given
point cloud as minimizing an energy functional. Using this formulation, they
optimize the blending weights and positions of the center points of the RBF. By
optimizing the center position, they obtain a better approximation of the surface
even while using fewer center points.
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To explain the details of this approach, assume that we have Nc center points
and Ns on-surface points, where Nc ≪ Ns. This approach seeks the parameters
of the RBF by minimizing the following energy functional:

E(X) =
Ns∑
i=1

||f(xi)||2 . (3.3)

Where in Equation 3.3, X = {(αj, cj, βk), j = 1, . . . , Nc, k = 1, . . . , 4} are
free variables.

Solving the fitting problem just by minimizing the energy functional in Equa-
tion 3.3 yields the trivial solution that f is zero everywhere. In Subsection 3.1.3,
we stated that to avoid this trivial solution we can generate new off-surface points
along the normals direction. The problem with these artificial points is that they
may penetrate the surface of the object, and there is no guarantee to generate
the non-on-surface points.

In Süßmuth et al. (2010), instead of generating new artificial points, they
directly incorporate the normal vectors of the on-surface points in the energy
formulation. The gradient of the signed distance function f is perpendicular to
the function, or in other words, it corresponds to the normal vectors of the on-
surface points. With this property of the signed distance functions, they extend
the energy functional (Equation 3.3) by adding a gradient term which penalizes
the deviations of ∇f from the normal vectors:

E(X) = θ
Ns∑
i=1

||f(xi)||2 + θ̂
Ns∑
i=1

||∇f(xi)− ni||2 . (3.4)

In this equation (3.4), ni is the normal vector of the sample point xi, and
θ̂ = (1 − θ). We can use θ to balance between fitting the on-surface points
and the gradient in the energy functional. As the normal vectors have unit
length, and the sample points are normalized in a unit cube [0, 1]3, they set
θ = 0.95 to compromise between the data term and the gradient term in the
energy functional.

With this energy formulation, they minimize the least-square error by jointly
optimizing for the blending weights and the center positions. As optimizing the
set of center positions to minimize the least-square error no longer boils down
to solving a linear system, they use the Levenberg-Marquardt algorithm (LMA)
(Marquardt (1963)) to optimize the parameters of the RBF which minimize E(X)

in Equation 3.4. Figure 3.2 shows the effect of optimizing the center locations.
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In this figure, we can see that with optimizing the center points, the final result
captures more details of the object.

Figure 3.2: Reconstruction of an object with 90 center points, before (left) and
after (right) optimizing center locations (Süßmuth et al. (2010)).

3.1.5 Marching Cubes Algorithm
The marching cubes algorithm is a simple approach for extracting a polygonal
mesh of an implicit function proposed by Lorensen & Cline (1987). Given an
implicit function f , we can obtain the underlying polygonal mesh of the function
by marching over a uniform grid in a volume and evaluating the function at the
corners of each cube. We can specify the resolution of the sampling grid in the
volume depending on the desired quality. By increasing the resolution, marching
cubes algorithm can generate meshes with higher-quality.

The marching cubes algorithm evaluates all the corners of a cube based on the
given function f . If all of the corners of a cube are positive the cube is entirely
outside of the surface, or if all of them are negative then the cube is entirely
inside of the surface, or vice versa depending on the definition of the function.
Otherwise, part of the cube is inside the surface and another part is outside of
it. The surface of the function f intersects this cube’s edges where one of the
corners is inside, and another one is outside of the surface. For each cube, we
have 28 possible situations where a surface can intersect an edge, however many
of these are equivalent and there are only 15 unique cases which are depicted in
Figure 3.3. The marching cubes algorithm reconstructs the polygonal mesh of
the function f by interpolating the surface intersection along the edges.
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Figure 3.3: 15 unique patterns of cube configurations. (Lorensen & Cline (1987))

3.2 Neural Networks
A neural network (NN) is an information processing framework, which is com-
posed of a group of neurons. These neurons can receive input data and produce
an output using an activation function. The network architecture is formed by
arranging these neurons in layers. In a simple architecture, the output of each
layer is connected to the input of the next layer with a set of weights. In other
words, the neuron forms a directed weighted graph, which processes the informa-
tion through the layers to produce the output. We can train a neural network
model using a set of training data to solve a specific task such as classification,
recognition, etc. The training process consists of providing the input data and
the target output to the network. For every input, the network outputs a predic-
tion. Using a loss function we can measure the error of the network’s prediction,
and update the weights to minimize the error. We provide more details about
the training procedure in the next subsections.

In Chapter 1, we mentioned that in our proposed method, we use a convolu-
tional neural network (CNN) as an encoder to encode the input image to the 3D
geometry of the shape. In the rest of this section, we first explain how we can
encode and decode input data using a neural network model (Subsection 3.2.1),
and then we describe the CNN architecture and its training procedure in details
(Subsection 3.2.2).

3.2.1 Auto-encoders
An Auto-encoder is a neural network, which encode the input data to the latent
space representation and try to reconstruct the input data using the encoded
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representation of the data. Intuitively speaking, we can see the auto-encoders as
a learning-based compression method, which encodes the input data such as an
image to a small vector of real numbers.

This type of neural networks is also similar in spirit to principal component
analysis (PCA). It creates a representation of the input data in an unsupervised
fashion where just the information essential to the task is preserved, and the rest
of the information is removed.

An auto-encoder usually contains two main components, an encoder part
which encodes the input data to a latent representation, and a decoder part
which receives the output of the encoder as input and tries to decode it to obtain
the input data. Figure 3.4 shows a simple architecture of an auto-encoder. We
explain each part of the auto-encoder with an example in the following:

• Encoder: To encode a vector x ∈ Rn, the encoder takes x as input and
encodes it to the latent space representation z ∈ Rm where m ≪ n.

• Decoder: This part of the network takes the output of the encoder which
is z ∈ Rm as input, and tries to reconstruct the input data to the network
approximately as x′ ∈ Rn.

Figure 3.4: A simple auto-encoder network (Wang (2016)).
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3.2.2 Deep Convolutional Neural Networks
Convolutional neural networks (CNNs) are a special type of neural networks for
processing data with grid-like topology. These data could be a time-series data
in a 1D grid, or a RGB image in a 2D grid. The main difference between the
CNN architecture and a typical NN architecture is using convolutional operations
instead of the general matrix multiplication at least in one of the layers. Using
a stack of convolutional operations followed by activation functions and pooling
layers makes this type of NN a unique architecture to solve image recognition,
classification, segmentation and many other vision and graphics tasks.

Figure 3.5 shows the architecture of a simple convolutional neural network to
solve an image classification task. As we can see in Figure 3.5, usually a CNN
architecture has the following layers:

• Convolutional Layer

• Non-linearity Layer

• Pooling Layer

Each of these layers has a key role in the CNN architecture. In the rest of this
section, we explain how these layers work and how a deep stack of these layers
makes a CNN a powerful architecture to work with the grid-like data.

Figure 3.5: A simple convolutional neural network (Karn (2016)).

3.2.2.1 Convolutional Layer

A convolutional layer is a layer which performs a convolution operation using one
or more filters on an input tensor. Convolving each of these filters with the input
tensor extracts a specific feature map of the input, and these extracted feature
maps will be the input tensor of the following layer in the network. This input
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tensor could be the input RGB image with size w × h × 3 or the output of a
hidden layer with size w × h × d, where w and h refer to the width and height
of the tensor respectively, and d refers to its depth. The size of the filters which
is used in the convolutional layer is smaller than the input tensor. We provide
more details about this layer in the following example:

• Example : Consider that we have input RGB images with size 32×32×3,
and two filters with size 5× 5× 3 which have different values. To perform
convolution on the input image, we have to slide the filters over the image,
and in each step, we multiply the values in the filter with the corresponding
pixel values of the image and at the end, we sum up the result. In this
example, as we have filters of size 5×5×3, in each step we have to perform
75 multiplications in total. Every step of sliding the filter over the images
produces a number. In this case after sliding a filter with size 5×5×3 over
an image with size 32× 32× 3 we will have 28× 28 numbers which forms
a feature map. After sliding two filters on the input image we will have
two extracted feature maps. Figure 3.6 shows a visualization of sliding one
filter of size 5× 5 over an input data.

Figure 3.6: Visualization of a 5 × 5 filter convolving on an input data (Nielsen
(2015)).

3.2.2.2 Non-linearity Layer

In the CNN architecture, usually, each convolutional layer is followed by a non-
linearity layer. This layer applies an element-wise activation function on the
extracted feature map. The Rectified linear unit (ReLU) (Nair & Hinton (2010))
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which is depicted in Figure 3.7 is one of the recommended activation functions
that is used in most of the feed-forward neural network architectures. This oper-
ation is defined by the following function:

f(x) = max(0, x) .

With applying this activation on the extracted feature maps, all of the nega-
tive values will be replaced by zero. This operation yields a non-linear transfor-
mation on the output of the convolutional layer which performs a linear transfor-
mation on the input data. We can also use the tanh function or sigmoid function
as the activation function, however, ReLU performs better in most situations
(Goodfellow et al. (2016)).

Figure 3.7: Rectified linear activation function.

3.2.2.3 Pooling Layer

It is common to use pooling layers after each non-linearity layer. This layer
down-samples the extracted features of the previous layer by retaining the most
important information of each feature map. In this layer, we can use different
pooling operators to down-sample the input feature maps, e.g., Max pooling,
Average pooling, Sum pooling, etc.

To apply the pooling operator, we define a spatial neighborhood window and
slide it over the width and height of the outputs of the previous layer. In case of
using max pooling with window size 2× 2, every max operation takes a max over
4 numbers in the 2× 2 region. Figure 3.8 show an example of this layer with the
max pooling operator.
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Figure 3.8: Max pooling operation over a slice of an input (Karpathy (2016)).

The pooling layer reduces the number of parameters and computation in the
network by down-sampling the extracted features of the previous layer. Also, this
layer helps the network to extract features of the input data which are invariant
to small transformations, translations, and distortions.

In the CNN architecture, we usually have a stack of convolutional layers fol-
lowed by a non-linearity layer and pooling layer. By using pooling layers at
different levels of the network we can extract an almost scale-invariant represen-
tation of the input data.

3.2.2.4 Feature Learning

In a CNN architecture, consider a convolutional block as a component which
contains at least a convolutional layer, non-linearity layer(s), and pooling layer(s).
In general, in the network architecture, we have a stack of these blocks on top of
each other. With more blocks, the network learns to extract more complicated
and informative features of the input data. For example, in an image classification
task, in the first convolutional block, filters learn to detect simple features such
as edges and blobs. In the next convolutional blocks, as we down-sample the
extracted features, filters learn to detect higher-level features of the input data.
Figure 3.9 shows an example where filters learn to detect a different level of
features in different layers of the network. Note that Figure 3.9 is just an example
from Convolutional Deep Belief Network (Lee et al. (2009)) to demonstrate the
idea, and in fact, convolutional filters may detect features which have no meaning
for humans.
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Figure 3.9: Learning hierarchical representations of the data using the Convolu-
tional Deep Belief Network (Lee et al. (2009)).

3.2.3 Training Procedure
Consider that we have a stack of convolutional blocks followed by one or more
fully-connected layers. For the sake of explanation, assume that we want to solve
an image classification task. To train a classification model, we need a set of
training pairs of images and their corresponding class scores. Figure 3.5 shows
a four-class classification task, in this task a binary vector is assigned to each
input data. For example, in Figure 3.5 for the four-class classification task, the
ground-truth score of the boat image would be (0, 0, 1, 0). In general, with a
fixed architecture and pairs of training data to train a CNN model, we can do
the following steps:

1. Initialization: Initialize all of the filters’ weights and parameters of the
network randomly.

2. Forward pass: Feed the training data to the network. These data go
through the convolutional blocks to extract the features of the input data.
In the case of a classification task, the network outputs the probabilities for
each class. For example, if we feed the boat image for the first time, as we
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have initialized the parameters randomly, the output probability could be
(0.3, 0.1, 0.2, 0.4).

3. Error calculation: For each training input, the network outputs a predic-
tion. We calculate the difference between this prediction and the ground-
truth label.

4. Backward pass: Using the backpropagation algorithm, which is com-
monly used to train deep neural network, we can calculate the gradient of
the loss function with respect to all of the network’s parameters. With the
calculated gradient, we can update the parameters of the network using an
optimization algorithm to minimize the output error. For example, with
updating the weights after one pass, the output probabilities for the boat
image might be (0.05, 0.1, 0.65, 0.2), which is closer to the ground-truth. By
updating the parameters based on the output error, the network learns to
classify images such that it minimizes the prediction error.

3.2.4 Transfer Learning
In Subsection 3.2.3, we mentioned that to start the training procedure we have
to initialize all of the filters’ weights and parameters randomly, however this is
not necessarily an optimal way to initialize the parameters of the network. In
fact, randomly initializing the parameters is more like reinventing the wheel as
we usually need more general filters in the very first levels of the network such as
edge and blob detectors.

A more efficient and common solution is to use the parameters of a pre-
trained model as an initialization for the parameters of the network. To initialize
the parameters in this way, we can train a network on a very large dataset such as
ImageNet Deng et al. (2009), which contains 1.2 million images of 1000 different
categories. After training the model with a very large dataset, we can use the
trained parameters as the initialization or a feature extractor for a specific task. In
other words, we transfer the knowledge which is learned by a network to another
network to solve a different task. In general, we have two major scenarios for
Transfer learning:

1. Feature extractor: In this scenario, we first train the network with
a very large dataset such as ImageNet to solve the classification problem.
After that, we remove the last or all of the fully-connected layers after the
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convolutional blocks and treat the rest of the network as a fixed feature
extractor for another dataset or even another task. The extracted features
can be used to solve another classification task with a different dataset or a
different task such as an image segmentation or object detection problem.
We can use the extracted features as an input of a fully-connected layer
which is initialized randomly, and train this FC layer using the new dataset.

2. Fine-tuning: Another scenario is to re-train the pre-trained model for
the new task, by fine-tuning the parameters using the backpropagation
algorithm. We can update the parameters in all of the levels of the network
or freeze some of the very first layers and only fine-tune the parameters
of the higher-level part of the network. Usually, we can fine-tune just the
higher-level part of the network as the first levels of the network extract
more generic features, and the later layers extract more specific features
based on the training data.

3.3 GPU Programming
CUDA is a parallel computing platform and programming model which was in-
vented by NVIDIA. This platform lets programmers develop a high-performance
algorithm by running thousands of parallel threads on a graphics processing unit
(GPU) (NVIDIA (2012)). Nowadays, almost all the deep-learning libraries and
frameworks use this platform to accelerate the computation time of different
learning tasks.

3.3.1 CUDA Programming Model
The CUDA platform provides a heterogeneous model to use both the CPU and
GPU. In CUDA programming, we refer to the CPU and its memory as host, and
to the GPU and its memory as device. We can prepare data on the host and
perform the computation on the device by executing many threads in parallel.
In general, to develop a program with the CUDA programming model, we can
follow these steps (Cheng et al. (2014)):

1. Define and allocate the host’s and device’s variables.

2. Copy data from the host to the device.

3. Execute device’s functions (kernels) to do the computation.
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4. Copy the results from the device to the host.

In CUDA, we can parallelize the device’s functions (kernel) by executing them
with many threads in parallel. CUDA organizes these threads in a group which
is called a warp. Each warp contains 32 threads, a set of warps is considered as
a thread block and a set of these blocks is considered as a grid. Different thread
blocks can be executed concurrently using many parallel processors which are
grouped into Streaming Multiprocessors (SM). The number of SMs on a GPU
depends on the GPU model. However, the number of threads and blocks should
be specified by the programmer during the kernel launch. Figure 3.10 shows an
example of 2D thread blocks in a grid.

Figure 3.10: An example of a grid of thread blocks. (NVIDIA (2012)) .

3.3.2 Memory Hierarchy
GPU architectures, in general, have three main memory types. Global memory,
shared memory and registers. In the CUDA platform, threads can have access
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to the data from different memory spaces. In this platform, each thread has
its local memory which can be one or more registers. The access time to the
register is faster than other types of memories. Shared memory is accessible
by thread blocks, this memory is visible to all of the threads in a block, and
it is slightly slower than registers. Threads in a block can cooperate with each
other by sharing data through shared memory. Global memory is the slowest
memory which is visible to all of the threads even in different blocks. Accessing
this memory takes hundreds of cycles. Figure 3.11 show an overview of the GPU
memory hierarchy.

Figure 3.11: An abstract view of the GPU memory hierarchy (NVIDIA (2012)).

3.3.3 Parallel Reduction
Parallel reduction is a tree-based approach to efficiently compute the aggregations
using cooperation among threads in parallel. This method provides an efficient
way to apply an associative and commutative operation on the elements of an
array. For example, consider an array with a large number of elements. One
way of applying an associative and commutative operation on the elements of
this array is to sequentially compute the operation in O(n), where n is the size
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of the array. However, we can also compute this operation in a parallel way by
executing many threads. Theoretically, we can compute such operations using
the parallel reduction approach in O(log(n)). In general, to do an operation on a
large array, we can perform parallel reductions in the following way (Cheng et al.
(2014)) :

1. Partition the array into some chunks, and consider a group of threads per
each chunk.

2. Compute the operation for each chunk in parallel.

3. Compute the final results based on the computed partial results of each
thread.

To implement an algorithm in CUDA with the parallel reduction approach,
Harris (2007) provide efficient strategies. However, with the new features which
are in the Kepler GPU architecture, we can make reductions on the elements of
the arrays or matrices even faster. In this architecture using shuffle instructions,
the threads can directly read a register from another thread in the same warp.
With this property, we don’t need to use shared memory to exchange the data
between threads within the same warp.

Using shuffle instructions, we can make parallel reductions over the warp. To
do this, we can simply use one of the shuffle instructions (based on the operation)
iteratively to calculate the results for each warp. For example, Figure 3.12 shows
an example of a parallel reduction in a warp using one of the shuffle instructions.
Using this solution, we can also apply reductions over the entire thread block.
To do this after applying reduction over warps, we can first write the partial
result of each warp into an array in the shared memory. After synchronizing the
threads within the block, atomic operations on the shared memory can be used
to calculate the aggregation for the block.
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Figure 3.12: Parallel reduction using shuffle instructions to compute the summa-
tion. (Luitjens (2014)) .
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Chapter 4

Method

In this section, we describe the contributions of this thesis in detail. We propose
a learning-based approach to reconstruct the 3D geometry of an object based
on a single monocular image. Given a single 2D image, this model outputs a
detailed signed distance function (SDF) representation that describes the geom-
etry of the object based on its zero-th level-set. We represent SDFs efficiently
based on a linear combination of floating radial basis functions, where both the
supporting points as well as the blending weights are free variables. We em-
ploy deep convolutional encoders to encode the monocular input image to the
latent space that spans the set of radial basis function parameters. In the de-
coder part of our model, we use a radial basis functions (RBF) decoder, which
decodes the extracted parameters to the detailed SDF representation of the ob-
ject’s surface. Since no dataset provides ground-truth distance fields, we propose
a weakly-supervised training approach that uses sampled points on the ground-
truth surfaces as weakly-supervised labels to reconstruct the surface of an object.
In this training approach using the sampled points, we train a regressor to opti-
mize for the best parameters of the radial basis functions. To develop this training
approach, we propose a new differentiable loss function, which we implement ef-
ficiently to perform the forward and backward passes on the GPU. Figure 4.1
shows an overview of our proposed method.

4.1 Surface Representation
We implicitly represent the 3D surface of an object as a signed distance function
f . The function f : R3 → R is constructed in a way that points x ∈ R3 outside
the surface are assigned a positive distance, points inside the object are mapped
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Figure 4.1: An overview of the proposed method.

to a negative distance value, and the zero-th level-set of this function represents
the surface.

To parameterize the signed distance function f , we employ a mixture of radial
basis functions with a 3-variate linear polynomial:

f(x) =
Nc∑
j=1

αjΨ(cj,x) + P (x) . (4.1)

Here, the Nc center points cj ∈ R3 define the locations of the basis functions,
αj ∈ R are the corresponding blending weights, and P (x) =

∑4
k=1 βkbk(x), where

βk ∈ R, and b(x) = (xx,xy,xz, 1). Note that, (xx,xy,xz) are the elements of the
vector x. We use the following radial kernels:

Ψ(cj,x) = e−λ||cj−x||22 . (4.2)

Where λ > 0, and controls the width of the Gaussian function. Normally,
the number of center points is small Nc ≈ 6000. We use the floating radial
basis functions (Süßmuth et al. (2010)), where the center points ci as well as
the blending weights αi and the linear polynomial’s parameters βk are considered
to be free variables. This enables the centers to ’move’, which leads to higher-
quality surface approximation results, especially if the center points are initialized
randomly, like in our case.

Thus the set of free variables is:

X = {(αj, cj, βk), j = 1, . . . , Nc, k = 1, . . . , 4} . (4.3)

Where in the training process of our method, we set αj and βk for all of the
j and k to zero, and initialize cj for each center point uniformly at random in a
unit cube [0, 1]3. We provide more detail about the initialization in Section 5.2
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4.2 Deep Convolutional Encoder
To represent the 3D geometry of the given 2D image as a radial basis function
f , we have to estimate the parameters of this function based on the input 2D
image. We do this by employing a deep convolutional encoder to transform the
input 2D image to the parameters of the function which represents the surface of
the object implicitly. Our goal is to estimate the set of free variables X (Equation
4.3) of the radial basis function f (Equation 4.1). More specifically, using an
encoder, we extract the features of the input 2D image and map them to the
parameters of the function f . During the training procedure, the network learns
to use the specific characteristics of different classes of 2D input images in order
to distribute the center points more optimally. For example, to reconstruct a
chair, it requires more center points close to the legs of the chair in comparison
to the other parts.

4.2.1 Encoder Architecture

To encode the input 2D image to the parameters of the radial basis function
we use a pre-trained VGG16 model (Simonyan & Zisserman (2014)) that was
trained on the ImageNet dataset (Deng et al. (2009)). This model contains a
stack of convolutional blocks followed by three fully-connected layers. We remove
the fully-connected layers, and only use the convolutional blocks to extract the
features of the 2D input images. All of these convolutional blocks contain two or
three convolutional layers followed by rectification non-linearities (Nair & Hinton
(2010)), and each convolutional block is followed by a max-pooling layer, and
the output of VGG16 is connected the two branches of the fully-connected layers
(see Figure 4.2). We provide more details about each part of the encoder in the
following:

• Input: The encoder takes a 137× 137× 3 image as input. Both the width
and height of this image are 137 and it has three color channels RGB.

• Convolutional Block: In each convolutional block, there are two or three
convolutional layers, all of these convolutional layers are followed by the
rectification non-linearity layer (ReLU). The output of each convolutional
block is the output of the last ReLU layer of that block.
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– Convolutional Layers: Each convolutional layer applies a 3 × 3 filter
to the input. This input could be an input images (e.g volume of size
137× 137× 3) or the output of the previous convolutional layer (e.g.
volume of size 16× 16× 256).

– Rectification Non-linearity (ReLU) Layer: This layer is an activation
function f(x) = max(0, x) which will be applied to each element of
the output of the convolutional layers.

• Max-pooling Layers: Each convolutional block is followed by a Max-
pooling layer. All max-pooling layers use a 2×2 pixel window with a stride
length of 2.

• Fully-connected (FC) Layers : The output of the VGG16 model is
connected to the two branches of FC layers. One of these branches which
contains two connected FC layers is used to transfer the extracted features
to all of the αj and βk variables. Another branch which also has two
connected FC layers is used to transfer the extracted features to estimate
the center points (cj). Note that, as these two groups of parameters could
be in different spaces, we use separate branches of FC layers to estimate
them.

Figure 4.2: An overview of the encoder architecture. Note that, in this archi-
tecture, we only use convolutional blocks of the VGG16 model.
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The output of the deep convolutional encoder spans a set of RBF parameters X
as defined in Equation 4.3. Using these parameters we can reconstruct a function
f which represent the surface of the object implicitly.

4.3 Radial Basis Function Decoder
As we already mentioned using the deep convolutional encoder, we transfer the
extracted features of the input 2D image to the parameters of the radial basis
function f . To reconstruct the function f we use a decoder which decodes the es-
timated parameters to a RBF function f . Equation 4.1 and 4.2 show the function
f and the radial kernel of this function which we use in our proposed method.
Since Equation 4.1 and 4.2 are differentiable with respect to the parameters, the
parameters can be learned using the backpropagation algorithm.

4.4 Weakly-supervised Loss
To train our proposed model, we employ a weakly-supervised loss (Equation 4.4).
Using this loss function, we measure how well the regressed signed distance field,
which is parameterized by a set of variables X, represents the surface of the object.

Etotal(X) = Epoint(X) + Enormal(X) + Eempty(X) . (4.4)
In this loss function, we employ the first two-terms (Epoint(X) and Enormal(X))

from the floating RBFs work (Süßmuth et al. (2010)) to apply the zero-crossing
constraint and the normal constraint. These two terms only specify where the
object should be in the 3D space, but they do not provide any information about
the empty part of the 3D space. Without having information about empty part of
the space, the model can reconstruct a surface of a shape with spurious surfaces
around it. With the third term in the loss function, we try to provide informa-
tion about the empty part of the space to avoid having spurious surfaces in the
reconstructions. In the following, we explain all of these terms in details.

4.4.1 Zero-crossing Constraint
To apply the zero-crossing constraint, we use the following term:

Epoint(X) = wpoint

Ns∑
i=1

||f(si)||2 . (4.5)
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This term (Equation 4.5) enforces the zero-th level-set of the function f to
be on the surface of the 3D object. We do this by sampling points from the
3D surface and penalizing the deviation of the function value from zero at these
points.

In Equation 4.5, wpoint is the trade-off factor that controls the effect of this
term on the whole loss function, and Ns is the number of sample points.

4.4.2 Normal Constraint
In Subsection 3.1.3 we explained that using only the zero-crossing constraint
yields the trivial solution where f is zero everywhere. In this subsection (Subsec-
tion 3.1.3) we described that one of the solutions to avoid this trivial result could
be adding more constraints by generating off-surface points along the normal di-
rection. However, these artificial points may penetrate the surface of the object
and lead to a poor reconstruction. Instead of generating new artificial points, we
employ the normal constraint term from Süßmuth et al. (2010). With this term,
we enforce the gradients of the function f at the sample points to be close to the
corresponding normal vectors:

Enormal(X) = wnormal

Ns∑
i=1

||∇f(si)− ni||2 . (4.6)

In Equation 4.6, wnormal is the trade-off factor that controls the effect of this
term on the whole loss function, Ns is the number of sample points, and ni is the
corresponding normal vector of the sample point si.

4.4.3 Empty-space Constraint
In Section 4.4 we mentioned that with the first two terms, we specify where the
surface should be in the 3D space, but these terms do not provide any information
about the empty part of the space. In other words, the zero-crossing and normal
constraints do not penalize for occupying the empty space. This could lead the
model to construct a function f which represents some spurious surfaces that are
not part of the ground-truth surface.

To deal with this problem, we add an empty-space constraint to our loss
function. In this term (Equation 4.7), ∀(r, d) ∈ R, r is a random point in a unit
cube [0, 1]3, and |d| is the closest Euclidean distance of that random point to the
sample points, while the sign of d is positive if r is outside of the surface, and
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negative if it is inside the surface. From this point, we call d as signed Euclidean
distance.

Eempty(X) = wempty

∑
(r,d)∈R

||f(r)− d||2 . (4.7)

To apply the empty-space constraint, we generate |R| random points in the
unit cube, and enforce the function f at these points to be close to the signed
Euclidean distance d. More specifically, with this term, we try to specify in which
part of 3D space the estimated function f should not be zero. Figure 4.3 shows
the effect of using this constraint in the loss function.

Figure 4.3: An example of reconstructing the surface of a car. (a) With using
the empty-space term, (b) Without using empty-space term

In Equation 4.7, we use wempty as a trade-off factor to control the effect of this
term with respect to the other terms.

In this term (Equation 4.7) the generated random point r could be inside or
outside of the surface. In our SDF representation, we want to assign a positive
distance value to points outside of the surface, and a negative distance value to
points inside the surface. To do this, we specify the sign of the distance d by
computing the distance to the tangent plane of the closest sample point in terms
of Euclidean distance. We can compute the distance r to the tangent plane of
point s by using h(r) = (r − s)T · n, where s is the closest sample point to the
random point r, and n is the corresponding normal vector of that sample point
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(Figure 4.4). Using the sign of the function h(r) we can determine the sign of the
distance d.

Figure 4.4: An example of computing the distance to the tangent plane.
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Training

In this chapter, we first describe the details of the training data and the dataset
which we use to prepare this training set (Section 5.1). We show an example of
the training pair of the data which consists of 2D image with its corresponding 3D
information. In addition to this, we also provide details of rendering the 2D image
from 3D CAD data, and sampling the points and their corresponding normals
on the 3D data. In Section 5.2, we explain each step of the training procedure
in details. We describe how we use pairs of 2D images and corresponding 3D
information (points and the normal vectors) to train a model which predicts the
3D geometry of the 2D input as an implicit function.

5.1 Training Data
To train our model, we need pairs of 2D images with their corresponding 3D
information. In our case, as we want to predict the 3D geometry of the object
from 2D, we use sampled points and their corresponding normal vectors of the
ground-truth mesh as the 3D information. To produce these pairs of data, we
use a dataset of 3D CAD models.

5.1.1 Dataset
The ShapeNet dataset (Chang et al. (2015)) is used to prepare the training and
testing data for our model. This dataset is a collection of 3D CAD models
which is organized based on the WordNet taxonomy (Miller (1995)). ShapeNet
is made of two different subsets, ShapeNetCore which contains 3D models of 55
different categories, and ShapeNetSem which contains 3D models with more dense
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annotation. We use a subset of ShapeNetCore with more than 15,000 models of 4
different categories. To have comparable results with other models, for splitting
data into train and test set, we follow Choy et al. (2016). We use 4/5 of the
shapes for training the model and the remaining shapes for testing the model.
Figure 5.1 shows some examples of the 3D shapes from ShapeNetCore.

Figure 5.1: 3D shapes from four different categories of ShapeNetCore (Chang
et al. (2015)).

5.1.2 Training Pairs
To train our model, we need 2D images as the input data and their corresponding
3D geometry information. For the 2D objects, we use the rendered 2D images
which were provided by Choy et al. (2016). They rendered 24 RGB images per
object in different views. Figure 5.2 shows an example of a pair of training data.

Figure 5.2: RGB image of the object (left), sample points and the corresponding
normal vectors of the ground-truth mesh (right).

To provide the 3D information, we have to use 3D CAD models of the
ShapeNetCore dataset. This dataset contains lots of meshes with artifacts, such
as overlapping triangles, flipped normals, and non-manifold structures. To com-
pute the sample points and their correct normal information of the ground-truth
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meshes, we follow Wang et al. (2017). They use a ray shooting algorithm to
densely sample points with their corresponding normal vectors. To do this, they
suggest to use 14 virtual cameras, and uniformly shoot 16k parallel rays from
each direction. We can calculate the intersection of these rays with the surface,
and the orientation of the normal vectors for each point. Figure 5.3 shows an
example of densely sampled points using the ray shooting algorithm computed
by Wang et al. (2017). After densely sampling the points on the meshes, for the
training data, per each object we sub-sample Ns points uniformly.

Figure 5.3: An example of the densely sampled points using the ray shooting
algorithm provided by (Wang et al. (2017)). In this example, we sample points
on a 3D shape of the car category from ShapeNet (Chang et al. (2015)).

5.2 Training Procedure
Our goal is to train a model which gets a 2D image as input and outputs a detailed
singed distance representation. To do this, as we explained before, we use a deep
convolutional encoder followed by two branches of the fully-connected layers. We
use this convolutional network to encode the input 2D object to the parameters
of the signed distance function. To train this model, we use our proposed loss
function (Equation 4.4) as we explained in Section 4.4. As we mentioned in
Subsection 5.1.2, we use pairs of 2D objects with their corresponding sample
points and normal vectors as our training data. In the training procedure, we
feed the 2D object to the encoder to transfer it to the parameters of the radial
basis function. With the extracted parameters in the decoder part of the model,
we construct the radial basis function f . To evaluate the constructed function
f we use our proposed weakly-supervised loss function. After evaluation, we use
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the backpropagation algorithm to update the parameters of the model using the
chain rule. Below, we explain each step of the training procedure of our model
in more detail.

1. Initialization: As we stated before, to initialize the convolutional blocks of
VGG16 (Simonyan & Zisserman (2014)), we employ the pre-trained VGG16
model which was trained on the ImageNet dataset (Deng et al. (2009)).
Note that, in our network architecture, we initialize the weights of the
fully-connected layers such that αj and βk for all of the j and k are equal to
zero, and cj for each center point are random vectors in a unit cube [0, 1]3.

2. Forward pass: In this step, we feed the 2D images of the objects to
the network. These images go through the convolutional blocks of the
encoder to extract the features of the input data and transform the input
to the parameters of the signed distance function. We encode the extracted
features to the blending weights, linear polynomial parameters, and center
points of the radial basis function. In the decoder part, we construct the
RBF function using the estimated parameters. This function represents the
3D geometry of the object implicitly.

3. Error calculation: To evaluate the constructed function, we use our
weakly-supervised loss function which we described in Section 4.4. Re-
member that, in our training data per each 2D image, we have sample
points and their corresponding normal vectors of the ground-truth mesh.
In addition to this, during the training procedure, we randomly sample |R|
points in the unit cube [0, 1]3. In the following, we explain how we evaluate
each term of the loss function using these data.

• Zero-crossing constraint: We use the sample points of the ground-
truth mesh to evaluate this term. By evaluating this term, we measure
how far the function f is from representing the surface as the zero-th
level-set. In other words, for the sample point si, how close f(si) is to
zero.

• Normal constraint: To evaluate this term, we use the sample points
and their corresponding normal vectors. This term calculates the de-
viation of ∇f(si) from the normal vector ni.
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• Empty constraint: We use this constraint to provide information
about the empty part of the 3D space. As we already mentioned, to
evaluate this term, per each input, we randomly sample |R| points
in the unit cube [0, 1]3. With this term, we evaluate the estimated
function f at each random point r, and measure how far it is from the
distance d, which is the signed Euclidean distance of r to its closest
sample point.

4. Backward pass: As our proposed loss is differentiable, we can use the
backpropagation algorithm to update the parameters of the network. We
calculate the gradients with respect to the blending weights and center
points for each term of the loss function and update all parameters of the
network using the chain rule. To optimize these parameters we use the
ADAM optimization algorithm Kingma & Ba (2014).
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Chapter 6

Experiments

6.1 Implementation
We implement our network architecture and loss function using the Keras frame-
work (Chollet et al. (2015)) with the Tesorflow (Abadi et al. (2015)) back-end.
Keras is a high-level neural networks API which can be used on top of different
frameworks such as TensorFlow, CNTK (Seide & Agarwal (2016)), or Theano
(Theano Development Team (2016)). The details of the network architecture and
the implementation are provided in Subsection 6.1.1. We accelerate the training
procedure by using a fast parallel implementation of the proposed loss function.
The implementation details of the loss function is provided in Subsection 6.1.2 .

6.1.1 Network Implementation
As we mentioned before (Section 5.2), we employ the pre-trained VGG16 model
(Simonyan & Zisserman (2014)) followed by two branches of fully-connected (FC)
layers to encode the input RGB images to the parameters of the RBF. To imple-
ment the pre-trained VGG16 model, we use the pre-trained weights of VGG16
which are provided in Keras. The VGG16 model was trained on ImageNet (Deng
et al. (2009)), and we only use the convolutional blocks of this model. We con-
nect the outputs of the VGG16 to the two branches of the FC layers. In the first
branch, we have two connected FC layers that map the output of the VGG16
to the blending weights of the RBF and the parameters of the linear polynomial
term. The first FC layer has 800 outputs and the size of the second one is equal
to Nc+4, where Nc is the number of basis functions. We have four more neurons
in this FC layer to parameterize the linear polynomial part of the function f .
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In another branch, we use two FC layers to map the output of VGG16 to the
center points of the RBF. The first FC layer has 1500 outputs, and the size of the
second layer of this branch is equal to Nc × 3. Note that, as we have one center
point per each basis function, so Nc is the number of basis functions and also
the number of center points in RBFs. In these two branches, for the first layer of
each branch we apply ReLU as the activation function, and in the second layer
of each branch, we use the linear activation function a(x) = x.

In the decoder of our model, we construct the radial basis functions using the
estimated parameters. To evaluate the estimated function, we use our proposed
weakly-supervised loss function. As our loss function is differentiable, we use the
backpropagation algorithm to update the parameters of the model, including the
weights of the VGG16 and FC layers. To optimize the network’s parameters, we
use the ADAM optimization algorithm (Kingma & Ba (2014)) with a learning
rate 3× 10−4.

6.1.2 Loss function Implementation
To accelerate the training procedure, we present a fast parallel implementation of
the proposed loss function. We use the CUDA platform to parallelize the evalu-
ation and gradient computation of this function. To parallelize this computation
efficiently, we employ the parallel reduction approach.

In Equation 4.4, we can consider the evaluation of each term as the summation
of all of the elements of a matrix, where the number of rows is equal to the number
of sample points, and number of columns is equal to the number of center points.
As all of the matrix elements are independent from each other, we can parallelize
the evaluation of the loss function by launching a thread to compute each element
of the matrix. For example, to evaluate the first term of the loss function, we
have to compute f(x) =

∑Nc

j=1 αjΨ(cj,x) for Ns different sample points. We
can consider this term in the form of a Ns × Nc matrix. To parallelize the
computation of this term, we specify Ns ×Nc number of threads, where each of
these threads computes one element of the term. To compute the summation of
these elements in a parallel way we use warp reduce and block reduce approaches
which we described in Subsection 3.3.3. Using the same idea, we parallelize the
computation of the other two terms of the loss function. We also parallelize the
computation of the gradients of our function with respect to the free variables X
(Equation 4.3). As the gradients also take a matrix form, we use the same idea
to compute the gradients of our loss function.
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6.2 Results
In this section, we show qualitative and quantitative evaluations of our approach
and compare it with the state-of-the-art methods. To evaluate our method, we use
the dataset described in Subsection 5.1.1. To have a fair comparison with other
approaches, we use the same training and validation split provided by Choy et al.
(2016). We train separate models for four different categories of the ShapeNet-
Core dataset and validate the capability of our models by providing qualitative
and quantitative results. In Subsection 6.2.2, we compare our results with the
ground-truth meshes qualitatively. In the next step, we compare the quality and
accuracy of our reconstructions with the state-of-the-art approaches (Subsection
6.2.3). At the end of this section (Subsection 6.2.4) we analyze the quality and
accuracy of the results using a different number of RBF parameters.

6.2.1 Training Data and Parameters
We validate our approach on four different categories of the ShapeNetCore dataset.
We use 24 RGB images per object as input, and 15k sample points with their cor-
responding normals as the weakly-supervised label information. As we mentioned
in Subsection 5.1.1, we sub-sample these 15k points uniformly out of all of the
points on the ground-truth meshes. To train and evaluate our approach, we use
3535 3D objects of the car category, 6778 3D objects of the chair category, 2373
3D objects of the firearm category, and 3173 3D objects of the couch category.
There are 24 RGB images in the different views so that we can have 24 pairs of
training data per each object model. For example, in the car category, we have
84840 pairs of data, from which we use 80% of the data for training and 20% for
validation.

We train our network on the training set of the four categories separately and
validate the trained models using the validation set. For training the models, we
use the same set of parameters and network architecture for all of the experiments.
We provide details of the network architecture in Subsection 6.1.1. Each of these
models is trained for 400000 iterations with a batch size of 10. We run the whole
training procedure using our efficient implementation of the loss function on the
GPU. The training and evaluations are performed on a NVIDIA Tesla V100 GPU
with 16GB RAM. We empirically determined the parameters and weights of the
loss function using the validation sets of the data. In the following, we provide
all weights and parameters used in our approach:
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• Weights of the loss function: wpoint = 90, wnormal = 0.2, wempty = 15.

• Number of random points for the empty-space term: |R| = 900.

• Parameter of the ADAM optimizer (Kingma & Ba (2014)): lr = 3× 10−4,
beta1 = 0.9, beta2 = 0.999, decay = 0.0.

• Number of blending weights, linear polynomial parameters, and center
points: |α| = 6000, |β| = 4, |c| = 6000.

• Parameter of the Gaussian function: λ = 250

After training the models, to validate our approach on different categories, we
feed the 2D images of the test set to the trained models. Each model map the 2D
input image to the parameters of the function f , which describes the underlying
geometry of the object. With the extracted function f , we reconstruct the surface
of the object using the marching cubes algorithms (Subsection 3.1.5). All of these
surfaces are reconstructed in a unit cube with resolution 128× 128× 128.

6.2.2 Qualitative Results
In this subsection, we show qualitative results of our approach on different cat-
egories. We visually compare the output of our method with the ground-truth
meshes. In these results, we can see that our approach can reconstruct a variety
of objects from different categories using only a single monocular image. Besides
this, the results show that with the SDF representation, our method is capable
of reconstructing a consistent surface throughout the objects with local details.

Figure 6.1 shows qualitative results of four objects from the car and chair cat-
egories. In this figure, we can see that our method can reconstruct the geometry
of the cars and chairs with varying structures from different views. For example
in the second row, we can see that our approach reconstructs the surface of the
car only by using a single image from one side of the object. This figure also
depicts the capability of our method to represent the local details of the objects.
For example, in the car category we can see the four wheels of the cars are cap-
tured, or in the third row, the roundness of the chair’s top rail is preserved in the
reconstruction.

In another qualitative example, Figure 6.2 shows the results of four objects
from the firearm and couch categories. The reconstruction results of different
firearms and couches show the ability of our method to reconstruct the local
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details of the objects, such as the barrel of the firearms in the first two rows, and
cushions of the couch in the fourth row.

Even though Figures 6.1, and 6.2 show the capabilities of our approach to
estimate the surface of the different objects. We can also see some of the limi-
tations and drawbacks of our method. For example, in Figure 6.1, the mirrors
of the cars are not represented, or in the third row of this figure, the legs of the
chair are not reconstructed with high-quality details.

Figure 6.1: Qualitative results of the car and chair categories, (a) Input RGB
image, (b) Ground-truth mesh, (c), (d), and (e) are our triangular mesh recon-
structions from different views.
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Figure 6.2: Qualitative results of the firearm and couch categories, (a) Input
RGB image, (b) Ground-truth mesh, (c), (d), and (e) are our triangular mesh
reconstructions from different views.

6.2.3 Comparison

We compare our proposed method with three state-of-the-art approaches, Atlas-
Net (Groueix et al. (2018)) which is concurrently done and has not been published
yet, PointSetGen (Fan et al. (2017)), and 3D-R2N2 (Choy et al. (2016)). We pro-
vide qualitative comparisons of our results with these three methods and quanti-
tatively compare the accuracy of our reconstruction with AtlasNet (Groueix et al.
(2018)) and PointSetGen (Fan et al. (2017)). AtlastNet represent the surfaces
of the objects using a group of patches, PointSetGen use point cloud representa-
tion to reconstruct the 3D geometry of the shape, and 3D-R2N2 use voxel-grid
to represent the 3D shape of the objec. In Chapter 2 we introduced all of these
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approaches in more details.
To perform these comparisons, we train separate networks for different cat-

egories. However, all other methods train one model to reconstruct all of the
categories. We use the trained networks provided by the authors for the evalu-
ations 1. Training one network for reconstructing multiple categories is left for
future work. In these comparisons, the AtlasNet meshes are reconstructed with
25 patches, PointSetGen results are represented with 1024 points, and 3D-R2N2
outputs are reconstructed in a volume with resolution 32× 32× 32.

In Figures 6.3, 6.4, 6.5, and 6.6, we qualitatively compare our approach with
3D-R2N2, PointSetGen, and AtlasNet. These results show that our method
reconstructs more local details of the objects in comparison to 3D-R2N2 and
PointSetGen. Besides this, as we use the SDF representation instead of a group
of patches, in comparison to AtlasNet, our reconstructed surfaces are more con-
sistent throughout the objects.

Based on the qualitative comparisons we can see that 3D-R2N2 and PointSet-
Gen can not reconstruct many of the local details of the objects. For example,
in Figure 6.3, 3D-R2N2 does not capture the wheels of the cars accurately, or in
Figure 6.5, the barrel of the firearms is not reconstructed with fine-details. In
Figure 6.5, in the fourth row, PointSetGen does not represent the thin structure
of the firearm’s stock. In contrast, our approach can represent these local details.
For example, in Figure 6.3, our method represents the wheels of the cars with
high-quality, and in Figure 6.5 it reconstructs the firearms’ barrel and stock with
more local details in comparison to the 3D-R2N2 and PointSetGen approaches.

In the qualitative results, we can also see the comparisons between our ap-
proach and AtlasNet. Figures 6.3, and 6.4 show that our method and AtlasNet
can reconstruct the surface of the cars and chairs with more local details in com-
parison to the other methods. AtlasNet generates the surface of the objects with
a group of patches, where these patches could be disconnected. In Figure 6.4, and
6.6, we can see the local discontinuities on AtlasNet’s reconstructions. For exam-
ple, in the first and second rows of Figure 6.4, there are disconnected patches on
the arms of the chairs. In contrast, our approach can reconstruct surfaces which
are more consistent throughout the objects.

In these qualitative results, there are also cases where AtlasNet reconstructs
more local information of the objects in comparison to our method, such as mir-
rors of the cars ( Figure 6.3). In Figure 6.4, we can see that AtlasNet reconstructs

1While it would be more fair to compare our results with other approaches in the same
setting (one network per category), we do not have access to such trained models.
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the thin structures of the chair such as legs and arms. However, our method is not
able to reconstruct some of these thin structures correctly. For example, in the
fourth row, one of the legs of the chair is not connected to the chair’s seat. There
are also cases where AtlasNet cannot capture the fine-details and thin structures
of the objects, which shows that reconstructing these thin structures is a difficult
problem for all of the methods. For example, in the fifth row of Figure 6.4, we
can see that AtlasNet does not capture the four legs of the chair. However, our
method represents all four legs of the chair. Even when AtlasNet represents more
local details of the shapes in comparison to our method, we can see that our
approach reconstructs surface which are more consistent throughout the objects.

To quantitatively compare our results with other methods, we use two cri-
teria. First, we compare the Chamfer distance (Borgefors (1984)) of the output
points set sampled from the reconstruction with the ground-truth point clouds.
Using this criterion, we compare our method with PointSetGen and AtlasNet.
This criterion only compare point clouds without considering the surface connec-
tivity. To account for surface connectivity, we use the METRO tool (Cignoni
et al. (1998)) to compute the Hausdorff distance between the outputs and the
ground-truth meshes. To do these quantitative comparisons, we randomly select
20 objects from each category. Note that, all of the outputs and the ground-truths
are normalized to a unit cube [0, 1]3.

Table 6.1 shows the Chamfer distance (Borgefors (1984)) between the ground-
truth point clouds and the outputs of PointSetGen, AtlasNet, and our method.
Note that, ground-truth point clouds have 30k points, PointSetGen outputs have
1024 points, AtlastNet outputs have 30625 points, and our outputs have 10k to
500k points depending on the volume of the shape. To perform this compari-
son, we ran the iterative closest point (ICP) algorithm (Besl & McKay (1992))
for 30 iterations between each output and the corresponding ground-truth point
cloud. We use the ICP algorithm to align the outputs of each method to the
ground-truth point clouds. In this table (Table 6.1) we can see that our method
outperforms PointSetGen on all of the categories and in average. This is mainly
due to the tendency of PointSetGen to generate points inside the 3D object, while
our approach, because of empty-space term in our loss function, generates sur-
faces on the 3D shape. Based on this table, AtlasNet performs better than our
method and PointSetGen on all of the categories and in average. However, as we
mentioned before, our method reconstruct consistent and smooth surfaces, while
AtlasNet uses patches to generate the surfaces which can be locally disconnected.
In Figure 6.7 we show the heat map errors of one object per each category. The
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Car Chair Firearm Couch Mean
PSG 3.122 3.108 0.945 2.586 2.440

AtlasNet 0.883 1.615 0.531 1.408 1.109
Ours 1.073 2.652 0.7199 1.773 1.554

Table 6.1: Quantitative comparison of PointSetGen (Fan et al. (2017)), AtlasNet
(Groueix et al. (2018) and our method for different categories. The Chamfer
distance is computed between each method and the ground-truth point cloud,
after running ICP alignment with the ground-truth point cloud. The results are
multiplied by 102, and the last column shows the category-wise mean.

Car Chair Firearm Couch Mean
AtlasNet 1.108 1.574 1.005 1.068 1.188

Ours 1.077 1.854 0.944 1.260 1.283

Table 6.2: Quantitative comparison between AtlasNet (Groueix et al. (2018) and
our method for different categories. The Hausdorff distance is computed between
outputs and ground-truth meshes using the METRO tool (Cignoni et al. (1998)).
The results are multiplied by 10, and the last column shows the category-wise
mean.

heat maps show the Chamfer distance of each point to the corresponding ground-
truth point cloud.

In Table 6.2, we report the Hausdorff distance between the ground-truth
meshes and the outputs of AtlasNet and our approach. To compute the Hausdorff
distance, we use the METRO tool (Cignoni et al. (1998)). METRO is a software
to evaluate the difference between two triangular meshes, which is more meaning-
ful for our outputs. This software considers the sampled points inside the faces of
the meshes to compute the error. Based on the results in Table 6.2, our method
outperforms the AtlasNet in the car and firearm categories, but in the chair and
couch categories, AtlasNet performs better than our method. Even though in
average, AtlasNet performs better than our approach, however, our method does
not require to optimize the parameterization to generate the meshes at the test
time. Beside this, AtlasNet cannot recover the orientation of the patches, and
in most of the cases, some patches are flipped inside out. In contrast, in our
approach because of the normal term we can correctly recover the orientation of
the surface.
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6.2.4 Ablation Study
In this subsection, we analyze the sensitivity of our approach to the number of
blending weights and center points (RBF parameters) on the quality and accu-
racy of the results. We evaluate several models with different number of center
points and blending weights on the car category to analyze the effect of RBF
parameters on the quality of the reconstructed surfaces. Based on the qualitative
and quantitative results, we show that with more RBF parameters, our approach
can capture more details of the objects, and estimate more accurate surfaces.

To do this comparison, we train three models with different number of RBF
parameters. To train these models, except the number of RBF parameters, we
use the same parameters which we specified in Subsection 6.2.1. We provide the
number of RBF parameters for each model in the following:

1. Model with 1k RBF parameters: |α| = 1000, |β| = 4, |c| = 1000.

2. Model with 3k RBF parameters: |α| = 3000, |β| = 4, |c| = 3000.

3. Model with 6k RBF parameters: |α| = 6000, |β| = 4, |c| = 6000.

In Figure 6.8 we show the qualitative results of our approach with varying
number of RBF parameters. In this figure, we can see that our model with 6k RBF
parameters reconstructs surfaces with more local details and less surface noise in
comparison to the other models. This figure shows that with 3k RBF parameters
our reconstructed surfaces have lots of noises on the surface with spurious surfaces
around the objects. We can also see that with 1k RBF parameters, our method
cannot represent even a rough shape of the objects.

In Table 6.3, we provide the Hausdorff distance between ground-truth meshes
and outputs of our models with different number of RBF parameters on the car
category. We compute the Hausdorff distance using the METRO tool (Cignoni
et al. (1998)). In this table, we can see that our approach improves as we increase
the number of RBF parameters. In fact, this table shows that with more blending
weights and center points, our approach can capture more accurate surfaces of
the objects.
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1K 3K 6K
Ours 2.403 1.322 1.077

Table 6.3: Quantitative comparison among different models of our approach on
car category, with 1k, 3k and 6k RBF parameters for car category. The Haus-
dorff distance is computed between outputs and ground-truth meshes using the
METRO tool (Cignoni et al. (1998)). The results are multiplied by 10.
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Figure 6.3: Visual comparison of the car category, (a) Input RGB image, (b)
voxel-based reconstruction of 3D-R2N2 (Choy et al. (2016)), (c) Point cloud 3D
model reconstruction of PointSetGen (Fan et al. (2017)), (d) Triangular mesh
reconstruction of AtlasNet (Groueix et al. (2018), and (e) Our triangular mesh
reconstruction.
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Figure 6.4: Visual comparison of the chair category, (a) Input RGB image, (b)
voxel-based reconstruction of 3D-R2N2 (Choy et al. (2016)), (c) Point cloud 3D
model reconstruction of PointSetGen (Fan et al. (2017)), (d) Triangular mesh
reconstruction of AtlasNet (Groueix et al. (2018), and (e) Our triangular mesh
reconstruction.
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Figure 6.5: Visual comparison of the firearm category, (a) Input RGB image,
(b) voxel-based reconstruction of 3D-R2N2 (Choy et al. (2016)), (c) Point cloud
3D model reconstruction of PointSetGen (Fan et al. (2017)), (d) Triangular mesh
reconstruction of AtlasNet (Groueix et al. (2018), and (e) Our triangular mesh
reconstruction.
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Figure 6.6: Visual comparison of the couch category, (a) Input RGB image, (b)
voxel-based reconstruction of 3D-R2N2 (Choy et al. (2016)), (c) Point cloud 3D
model reconstruction of PointSetGen (Fan et al. (2017)), (d) Triangular mesh
reconstruction of AtlasNet (Groueix et al. (2018), and (e) Our triangular mesh
reconstruction.
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Figure 6.7: Visual comparison of the heat map errors which are computed based
on Chamfer distance of the outputs to the ground-truth point clouds, (a) Input
RGB image, (b) Ground-truth mesh, (c) Heat map errors of point cloud 3D
model reconstruction of PointSetGen (Fan et al. (2017)), (d) Heat map errors of
triangular mesh reconstruction of AtlasNet (Groueix et al. (2018), and (e) Heat
map errors of our triangular mesh reconstruction. Note that to do this comparison
we normalize all of the outputs and ground-truth points to a unit cube [0, 1]3.
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Figure 6.8: Visual comparison among different models of our approach on the
car category, (a) Input RGB image, (b) Ground-truth mesh, (c) Our model with
1k RBF parameters , (d) Our model with 3k RBF parameters, and (e) Our model
with 6k RBF parameters.
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Chapter 7

Discussion and Future Work

In this thesis, we proposed a learning-based model to reconstruct the surface of an
object depicted in a single image. Even though the proposed model can estimate
an efficient and fine-detailed representation of the 2D image, this approach has
its limitations and drawbacks. Beside this, there are many potential possibilities
to improve and extend this method. In this chapter, we discuss the limitations
of our approach and propose potential solutions to tackle them.

7.1 Limitations
In Section 6.2, we showed that our approach can reconstruct a smooth surface of
the object including local details. However, there are cases where our method is
not able to obtain some of the fine-details and the thin structures of the objects.
For example, in the car category (Figure 6.3), for most of the cases we can not see
the mirrors of the cars in the reconstructed surfaces. In the chair category (Figure
6.4), there are some cases where the legs of the chairs are not reconstructed with
high-quality.

In Section 6.2, based on the qualitative and quantitative results we showed
that our approach is capable of reconstructing objects of different categories.
However, we have to train separate networks to reconstruct each category. In
the next step of this project, we are going to extend our approach to reconstruct
objects of different categories using a single trained model. To do this, we have to
leverage the generalizability of our approach to capture the fine-detailed surfaces
of a variety of objects. In the next section (Section 7.2), we provide some potential
solutions to tackle these limitations.
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7.2 Potential Solutions
Curvature-based Sampling:
In Subsection 5.1.2, we explained that to prepare the 3D information of the
training data, Ns points are uniformly sampled from the ground-truth objects.
By uniformly sampling the points on the objects, there will be a smaller number
of points on the thin structures of the shape in comparison to other smooth
structures. For example in Figure 7.1, we can see that there is a much smaller
number of points on the legs in comparison to the number of points on the seat of
the chair. With these sampled points, during the training procedure, our learning
model mostly tries to reconstruct parts of the object which have more sample
points. So, because of this sampling method, our approach can not reconstruct
the fine-details and thin structure of some of the objects. One of the possible
solution to remedy this problem is sampling the points based on their curvature,
the points with high curvature have more chance to be sampled than the other
points. With this sampling method we emphasis more on the non-flat regions of
the shape, which could lead to having more sample points on thin structures.

Figure 7.1: An example of a point cloud with 15000 points. These points are
uniformly sampled from the points on the object.
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Adaptive Basis Functions:
In our approach, the Gaussian function (e−λ||c−x||22) is used as the radial kernel to
construct the radial basis functions f . In this kernel λ control the width of the
function. By increasing and decreasing the width of the Gaussian function, we
can control capturing the local and global details of the shapes. Currently, we
use the same λ for all of the Nc basis functions, which means that to reconstruct
all parts of the objects with different properties we use a Gaussian function with
the same width. However, capturing the local and global details requires different
ranges of λ. To have different λ for reconstructing local and global details of the
objects, we can set λ as a free variable in the formulation of our method. More
specifically, in addition to blending weights, linear polynomial parameters, and
center points, we consider λ as a free variable which will be regressed by the
network. Thus the new set of free variables will be:

X = {(αj, cj, λj, βk), j = 1, . . . , Nc, k = 1, . . . , 4} .

With this solution, we can have adaptive basis functions to represent the sur-
faces of the different objects. These adaptive basis function can change their
supporting regions based on the local properties of the objects. In other words,
with this solution we can generate more accurate surfaces with higher quality. In
addition to this, using Gaussian functions with different widths we can increase
the generalizability of our approach to reconstruct the objects with different fea-
tures from multiple categories.

Auxiliary Classification Network:
Using an auxiliary classification network is another potential solution to increase
the generalizability of our approach. This solution can facilitate reconstructing
objects of different categories using a single trained model. In this auxiliary net-
work, we can use the object class prediction as an auxiliary task for reconstructing
the surface of the object. More specifically, in the training procedure of our ap-
proach we can jointly reconstruct the surface and predict the class of the objects.
To implement this idea, we can use one or two fully-connected layers after the
VGG16 model, in parallel to the other FC branches, to classify the input object
using a cross-entropy loss (De Boer et al. (2005)).
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Chapter 8

Conclusion

In this thesis, we proposed a novel learning-based approach for monocular re-
construction of arbitrary 3D shapes. Our approach takes a single RGB image as
the input and outputs a detailed signed distance function (SDF) representation
that describes the object geometry based on its zero-th level-set. We use a linear
combination of floating radial basis functions to represent the SDFs efficiently,
where the center points, the blending weights, and the parameters of the linear
polynomial are free variables.

To map the input RGB image to the detailed signed distance function, we em-
ploy a deep convolutional encoder, which extracts the features of the input images
and encodes them to the parameters of the floating radial basis function. This
encoder estimates the parameters of the radial basis function to construct the
SDF representation of the surface, where its zero-th level-set represents the sur-
face of the 3D shape. Our approach efficiently combines the lower favorable space
complexity of point-based approaches, with the surface approximation properties
of distance field-based reconstruction techniques.

Since existing datasets do not provide the ground-truth signed distance func-
tion for each object, we proposed a weakly-supervised training approach to train
our model. We optimize for the best fitting distance field by computing an align-
ment loss function on the ground-truth point cloud of the object. Instead of
directly regressing points on the shape, we regress the parameters of the radial
basis functions f , such that its zero-th level-set describe the underlying geometry
of the input.

We perform qualitative and quantitative evaluations to compare our approach
with the state-of-the-art methods. We demonstrate that our approach is capable
of reconstructing high-quality surfaces with local details. Extensive evaluations
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show that the results of our approach are comparable to the results of other
state-of-the-art methods.

72



Appendix A

Gradient of the
Weakly-supervised Loss

We introduce the weakly-supervised loss function in Section 4.4 (Equation 4.4).
As we already explained, this loss function is differentiable, and in the training
process, we can use the backpropagation algorithm to update the parameters
of the model based on the gradient of the loss function. In this appendix, we
analytically derive the gradient of each term of the loss function with respect to
the following free variables which we mentioned before in Section 4.1:

X = {(αj, cj, βk), j = 1, . . . , Nc, k = 1, . . . , 4} .

A.1 Zero-crossing Constraint
The following equation form the zero-crossing constraint.

Epoint(X) = wpoint

Ns∑
i=1

||f(si)||2 . (A.1)

In this equation (Equation A.1) f(si) =
∑Nc

j=1 αjΨ(cj, si) +
∑4

k=1 βkbk(si),
where Ψ(cj, si) = e−λ||cj−si||22 , and b(si) = (si,x, si,y, si,z, 1). The partial derivative
of this term with respect to a blending weight αj can be derived as follow:

∂Epoint(X)

∂αj

= wpoint

Ns∑
i=1

∂||f(si)||2

∂αj

(A.2)
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A.2 Normal Constraint

∂Epoint(X)

∂αj

= wpoint

Ns∑
i=1

2f(si)
∂f(si)

∂αj

(A.3)

∂Epoint(X)

∂αj

= wpoint

Ns∑
i=1

2f(si)
∂
(∑Nc

j=1 αjΨ(cj, si) +
∑4

k=1 βkbk(si)
)

∂αj

(A.4)

∂Epoint(X)

∂αj

= wpoint

Ns∑
i=1

2f(si)Ψ(cj, si) . (A.5)

We can derive the partial derivative of the Epoint with respect to the βk using the
same idea based on the Equations A.2 to A.5.

Center points are another free variables in our loss function. Note that, in this
appendix we consider the center point cj = (cj,x, cj,y, cj,z). To derive the partial
derivative of the Epoint with respect to cj,x we can follow the following steps:

∂Epoint(X)

∂cj,x
= wpoint

Ns∑
i=1

∂||f(si)||2

∂cj,x
(A.6)

∂Epoint(X)

∂cj,x
= wpoint

Ns∑
i=1

2f(si)
∂f(si)

∂cj,x
(A.7)

∂Epoint(X)

∂cj,x
= wpoint

Ns∑
i=1

2f(si)
∂
(∑Nc

j=1 αje
−λ||cj−si||22 +

∑4
k=1 βkbk(si)

)
∂cj,x

(A.8)

∂Epoint(X)

∂cj,x
= wpoint

Ns∑
i=1

4f(si) (−λ) αje
−λ||cj−si||22 (cj,x − si,x) . (A.9)

A.2 Normal Constraint
In Subsection 4.4.2, based on the following equation (Equation A.10) we define
the normal constraint.

Enormal(X) = wnormal

Ns∑
i=1

||∇f(si)− ni||2 . (A.10)
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A. GRADIENT OF THE WEAKLY-SUPERVISED LOSS

In this equation (Equation A.10) f(si) =
∑Nc

j=1 αjΨ(cj, si) +
∑4

k=1 βkbk(si), where
Ψ(cj, si) = e−λ||cj−si||22 , and b(si) = (si,x, si,y, si,z, 1). In Equation A.10, ∇f(si) =

(∂f(si)
∂si,x

, ∂f(si)
∂si,y

, ∂f(si)
∂si,z

). We derive each component of the ∇f(si) in the follow:

v1 =
∂f(si)

∂si,x
=

Nc∑
j=1

∂αjΨ(cj, si)

∂si,x
+

4∑
k=1

∂βkbk(si)

∂si,x
(A.11)

v1 =
∂f(si)

∂si,x
=

Nc∑
j=1

2(λ) αje
−λ||cj−si||22 (cj,x − si,x) + β1 . (A.12)

v2 =
∂f(si)

∂si,y
=

Nc∑
j=1

∂αjΨ(cj, si)

∂si,y
+

4∑
k=1

∂βkbk(si)

∂si,y
(A.13)

v2 =
∂f(si)

∂si,y
=

Nc∑
j=1

2(λ) αje
−λ||cj−si||22 (cj,y − si,y) + β2 . (A.14)

v3 =
∂f(si)

∂si,z
=

Nc∑
j=1

∂αjΨ(cj, si)

∂si,z
+

4∑
k=1

∂βkbk(si)

∂si,z
(A.15)

v3 =
∂f(si)

∂si,z
=

Nc∑
j=1

2(λ) αje
−λ||cj−si||22 (cj,z − si,z) + β3 . (A.16)

Based on the Equations A.11 to A.16 we can derive the partial derivative of
the normal constraint with respect to a blending weight αj as follow:

∂Enormal(X)

∂αj

= wnormal

Ns∑
i=1

∂||∇f(si)− ni||2

∂αj

(A.17)

∂Enormal(X)

∂αj

= wnormal

Ns∑
i=1

∂||(v1, v2, v3)− (ni,x,ni,y,ni,z)||2

∂αj

(A.18)

∂Enormal(X)

∂αj

= wnormal

Ns∑
i=1

(
2(v1− ni,x) 2(λ) e

−λ||cj−si||22(cj,x − si,x)

+ 2(v2− ni,y) 2(λ) e
−λ||cj−si||22(cj,y − si,y)

+ 2(v3− ni,z) 2(λ) e
−λ||cj−si||22(cj,z − si,z)

) . (A.19)
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We can follow the same idea of Equations A.17 to A.19 to derive the derivative
of Enormal with respect to the βk.

We derive the partial derivative of the term Enormal with respect to cj,x as
follow:

∂Enormal(X)

∂cj,x
= wnormal

Ns∑
i=1

∂||∇f(si)− ni||2

∂cj,x
(A.20)

∂Enormal(X)

∂cj,x
= wnormal

Ns∑
i=1

∂||(v1, v2, v3)− (ni,x,ni,y,ni,z)||2

∂cj,x
(A.21)

∂Enormal(X)

∂cj,x
= wnormal

Ns∑
i=1

(
2(v1− ni,x) 4(−λ2) αje

−λ||cj−si||22 (cj,x − si,x)
2 + 2λ αje

−λ||cj−si||22

+ 2(v2− ni,y) 4(−λ2) αje
−λ||cj−si||22(cj,y − si,y)(cj,x − si,x)

+ 2(v3− ni,z) 4(−λ2) αje
−λ||cj−si||22(cj,z − si,z)(cj,x − si,x)

) .

(A.22)

A.3 Empty-space Constraint
In Subsection 4.4.3, we define the empty-space constraint as follow:

Eempty(X) = wempty

∑
(r,d)∈R

||f(r)− d||2 . (A.23)

In this equation (Equation A.23), r is a random point in unit cube [0, 1]3,
and d is the signed Euclidean distance of r to its closest sample points. Note
that, in this equation (Equation A.1) f(r) =

∑Nc

j=1 αjΨ(cj, r) +
∑4

k=1 βkbk(r),
where Ψ(cj, r) = e−λ||cj−r||22 , and b(r) = (rx, ry, rz, 1). We can derive the partial
derivative of the empty-space term with respect to a blending weight αj based
on the following steps:

∂Eempty(X)

∂αj

= wempty

∑
(r,d)∈R

∂||f(r)− d||2

∂αj

(A.24)

∂Eempty(X)

∂αj

= wempty

∑
(r,d)∈R

2
(
f(r)− d

)∂f(r)
∂αj

(A.25)
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∂Eempty(X)

∂αj

= wempty

∑
(r,d)∈R

2
(
f(r)− d

)∂(∑Nc

j=1 αjΨ(cj, r) +
∑4

k=1 βkbk(r)
)

∂αj

(A.26)

∂Eempty(X)

∂αj

= wempty

∑
(r,d)∈R

2
(
f(r)− d

)
Ψ(cj, r) . (A.27)

Based on the same idea of Equations A.24 to A.27, we can derive the partial
derivative of the Eempty with respect to the βk.

To derive the partial derivative of the Eempty with respect to one element of
a center point we can follow the following steps:

∂Eempty(X)

∂cj,x
= wempty

∑
(r,d)∈R

∂||f(r)− d||2

∂cj,x
(A.28)

∂Eempty(X)

∂cj,x
= wempty

∑
(r,d)∈R

2
(
f(r)− d

)∂f(r)
∂cj,x

(A.29)

∂Eempty(X)

∂cj,x
= wempty

∑
(r,d)∈R

2
(
f(r)− d

)∂(∑Nc

j=1 αje
−λ||cj−r||22 +

∑4
k=1 βkbk(r)

)
∂cj,x

(A.30)

∂Eempty(X)

∂cj,x
= wempty

∑
(r,d)∈R

2
(
f(r)− d

)
2(−λ) αje

−λ||cj−r||22 (cj,x − rx) . (A.31)
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